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ings, but they follow the usual trends for bidisperse packings. The conductivity and permeability follow power
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are successfully represented as functions of porosity. Some dimensionless representations gather the numerical
data on curves valid for all particle distributions. Finally, comparisons with experimental data are satisfactory.
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I. INTRODUCTION

Grain packings have given rise to a considerable interest
for a long time, as a model for various types of porous media
such as geological materials like soils. Of course, regular
packings have been extensively studied, since their simple
geometries make an analytical or semianalytical determina-
tion of their properties achievable. However, they do not
account for the random character of most natural media.
Therefore, we shall not dwell on these models, and focus
rather on three-dimensional random packings and on their
macroscopic properties such as conductivity and permeabil-
ity.

A considerable literature has accumulated over the years
on this topic. A few surveys �1–5� review most of the works
done before 1990. The following brief survey will concen-
trate on the recent contributions and it will address the nu-
merical generation, the theoretical analysis, the determina-
tion of the macroscopic properties of packings, and the
experiments on packings.

Two major kinds of methods are used to generate random
packings, namely, random sequential addition and collective
rearrangement. The two methods can mimic the physical
processes which generate real particle packings, such as
deposition by gravity for the first one while the second one is
closer to generation of packings by shaking. The first method
usually generates packings with a larger porosity than collec-
tive rearrangement.

For sake of completeness, it may be interesting to mention
various techniques of collective rearrangement such as that
described in �6�: the particles that initially have random po-
sitions and may overlap are moved in order to suppress the

overlaps and they grow in order to reduce porosity. Similar
techniques are given in �7� and �8�. Kansal et al. �9� used a
nonequilibrium molecular dynamics simulation in which the
spheres grow over time; the growth rate of a sphere is pro-
portional to its initial diameter. Kristiansen et al. �10� used a
mechanical contraction technique similar to �8�; the particles
are distributed at random in a large cell which is contracted
repeatedly in steps; in each step, the overlaps are removed by
relocating the particles. The cell is contracted until the over-
laps can no longer be removed.

Random sequential addition has been less used recently
though it has the advantage of mimicking deposition by
gravity. In a ballistic deposition such as in the pioneering
work of Vold �11�, the grain trajectories toward their final
positions are built explicitly, which ensures that a particle
can actually reach its position during the genesis of the pack-
ing. This technique was extended to star particles by Coelho
et al. �12�, who surveyed extensively the literature prior to
1997. The macroscopic conductivity, the permeability, and
the dispersion were systematically determined in �12�. More-
over, the properties of these monodisperse packings were
studied in a series of other publications such as �13� for
application to NMR. Santiso and Müller �14� used a similar
algorithm though limited to spheres. The novel feature is that
several tries are made for each settling particle and the one
that provides the lowest position is retained; for monodis-
perse spheres, the porosity is not significantly smaller than
the one obtained in �12�.

Recent theoretical studies predicting the properties of
polydisperse sphere packings are scarce. Yu and Standish
�15,16� devised a semiempirical fit of the experimental re-
sults. For a given ratio of radii, there exists a fraction of the
small particles for which the overall porosity of a bidisperse
packing is minimal; this fraction and the corresponding po-
rosity can be approximated by relations derived from former
experiments; then, a sort of interpolation is proposed be-
tween this minimal porosity and the maximal porosity which
corresponds to monodisperse packings. It should be noticed
that this semiempirical approach is quite successful since it
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compares well with many numerical simulations �7,8�. Pat-
lazhan �17� used a statistical geometrical approach by divid-
ing a random packing of hard spheres into a set of tetrahedra
with the vertices coinciding with the centers of the neighbor-
ing particles. Then spheres of different types are distributed
at random in these tetrahedra.

Finally, some recent investigations which are at least
partly experimental should be mentioned. The permeability
of binary silica sphere packings was experimentally deter-
mined and successfully compared to the classical Kozeny-
Carman relation in �18�. Studies of a more applied nature
were carried out in packings inside cylindrical tubes in �19�.
Two-phase gas-solid flow through packed beds was studied
in �20�. Finally, the review of �21� about dispersion in packed
beds is of general interest.

This paper has two major objectives. First, it is a continu-
ation of �12�; it aims to obtain more precise numerical results
for the macroscopic properties of monodisperse packings of
spheres such as conductivity and permeability, thanks to the
development of computational power during the last ten
years. Second, it extends the results of �12� to bidisperse and
polydisperse packings of spheres in a systematic way. There-
fore, this paper is focused more on the transport properties of
the packings than on the packings themselves.

The paper is organized as follows. Section II recalls
briefly the sequential deposition algorithm of �12�. Then, the
major parameters used in the numerical simulations are sum-
marized; here again the reader is referred to �12� for a com-
plete account of the necessary parameters. Section III is de-
voted to a brief description of the main geometric and
transport properties, which are systematically calculated and
to the necessary methodology to calculate them. Results are
presented and discussed in Secs. IV and V. The porosities of
bidisperse and log-normal packings which are obtained with
the algorithm of �12� are presented in Sec. IV and briefly
compared to the literature data. The major emphasis is put on
Sec. V, where the conductivity and permeability are system-
atically calculated for these two types of packing. It is im-
portant to notice that a major effort has been made in order to
obtain precise numerical data, i.e., in the limit of a very
precise discretization of geometry.

II. CONSTRUCTION OF RANDOM PACKINGS

A. Sequential deposition algorithm

Our random packings result from the successive deposi-
tion of grains in a “gravitational” field. The grains are intro-
duced at a random location above the bed already in place,
and fall until they reach a local minimum of their potential
energy. Sometimes, a dynamic language is used, but the
reader should not be misled, since Newton’s laws of motion
are never solved. During their fall, any displacement and
rotation that contribute to lowering their barycenter are al-
lowed.

As a general rule, a mobile particle is allowed to slip
freely on the bed surface as long as the elevation of the
barycenter can be diminished. Morever, each elementary dis-
placement of a grain is independent of its previous position
and orientation increments. However, as described below, an

adjustable parameter favors either translation or rotation of
the particle, when both motions could lower its elevation.
Finally, the interactions are reduced to steric exclusion. A
variant of this rule has been devised to simulate short-range
attractive forces, which could create permanent links be-
tween grains. After contact, a settling grain can be allowed to
rotate around the contact point without slip �but the contact
may move if the grain rolls on the bed�. For instance, for
parallelepipedic grains, if a vertex comes in contact with an
underlying plane solid surface, the particle will rotate until
one of its edges and eventually one of its faces becomes
tangent to this surface.

The novel feature of our algorithm was that each particle
may have any size and shape, provided that it can be de-
scribed in a spherical polar coordinate system �r ,� ,�� at-
tached to it by a single-valued function ��� ,��. The inner
volume of the particle is defined by

r � ���,�� . �1�

Obviously, any convex particle shape can be described by
�1�. This paper only deals with spherical particles, but it
could be easily extended to the shapes studied in �12�.

The position of a particle is represented by the location
r= �x ,y ,z� of its barycenter, and by a set � of three angles
that give the orientation of the particle with respect to the
coordinate system. The z axis is oriented upward. The grains
are deposited in a square vertical box, with a flat bottom at
z=0, and periodicity conditions along the x and y directions
in order to avoid the well-known hard-wall effects �see Fig.
2�. Note that such hard-wall effects have been addressed by
Ding et al. �20� and Mehta and Hawley �22�.

B. Parameters of the numerical simulations

1. Definition of the grain size distributions

Two major types of packing are considered. First, bidis-
perse packings of spheres of radii r and R �with r�R� are
generated according to the algorithm described in Sec. II A.
The two radii are generally chosen in such a way that their
average is equal to 1 in order to keep the same precision in
the packing generation. The ratio R /r is denoted by � and the
volume fraction of large grains by fR. More precisely,

R =
2�

1 + �
, r =

2

1 + �
. �2�

However, when ��5 and fR�0.7, the number of small
grains that results from �2� becomes numerically overwhelm-
ing. Thus, in such cases, r was kept equal to 2/5, with R
=2� /5. Table I provides the list of radii used for bidisperse
packings. fR varies from 0 to 1 by steps equal to 0.1 and 0.2.

Second, polydisperse spheres with a log-normal distribu-
tion of the radius R are randomly packed. More precisely, the

TABLE I. List of radii used for the bidisperse packings.

� 2 3 4 5 6 8

r 2/3 1/2 2/5 2/5 2/5 2/5

R 4/3 3/2 8/5 10/5 12/5 16/5
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grain size distributions in number f�R� and in volume v�R�
are given by

v�R� =
1

�2�	R
exp� �ln R − 
�2

2	2 � ,

f�R� =
�R3	

�2�	R4
exp� �ln R − 
�2

2	2 � , �3�

where 
 is the average of the logarithm of the radius, and 	
its standard deviation. Experimentally, real packings are
mostly characterized by v�R�, but numerical packings are
more easily generated with f�R�. In order to compare the
various results, 
 is always equal to 1. The standard devia-
tion 	 varies from 0.05 up to 0.40 by steps equal to 0.05; two
larger values equal to 0.5 and 0.6 are also used. These dis-
tributions, which in principle go from 0 up to infinity, are
limited by a smallest and a largest radius equal to Rmin
=0.25 and Rmax=4, respectively. The values of v and f are
renormalized accordingly in this interval. These distributions
are illustrated in Fig. 1.

2. Overall dimensions of the samples

The packings are built by sequentially depositing particles
in a “box” with a square L�L horizontal cross section �see
Fig. 2� and a flat hard bottom. In order to minimize size
effects, periodicity conditions are applied along the two hori-
zontal directions. The height of the box is equal to 8L. Depo-
sition stops when a particle cannot enter totally into the cell.

The box is divided into ten layers of dimensions L�L
�0.8L. The bottom and the top layers are discarded and the
calculations are performed on the eight intermediate layers.
Results are averaged over these eight layers. In this paper,
for bidisperse and log-normal populations, L is equal to 16
for an average radius equal to 1 in most cases. Therefore, the
overall size of the cell is given by 16�16�128.

3. Additional numerical remarks

The algorithm is controlled by seven parameters, and the
influence of these parameters is detailed in �12� where addi-
tional information is given. Moreover, systematic studies on
the statistical fluctuations were performed in �12�. Such sta-
tistical fluctuations were controlled here by examination of
the porosity variations along the z axis. Except when segre-
gation occurs �see Sec. IV�, the statistical fluctuations are

low. For instance, for bidisperse packings with �=2, the po-
rosities in the ten slices of size L�L�0.8L depart by less
than �0.005 from the global average. The influence of the
flat bottom is limited to the first slice, which is systematically
discarded from the calculations of the transport properties.

Finally, thanks to the increased computer speed, the gen-
eration of a packing is now much faster than reported in �12�.
The computational cost depends greatly on the grain size
distribution. The calculations are very fast for narrow distri-
butions, when the grain trajectories involve generally only a
few bounces. For instance, about 360 grains per second are
deposited for a bidisperse population with �=2 and fR

=0.70. Broad distributions are more demanding. For ex-
ample, about 13 grains are deposited per second for a log-
normal distribution with 	=0.5. Theses rates are given for a
1.2 GHz Power5 RISC processor. However, in all cases the
packing generation is fast compared to the subsequent simu-
lations for the characterization of its transport properties.
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FIG. 1. Log-normal grain size
distributions in volume �a� and in
number �b�. The standard devia-
tion 	 �cf. �3�� varies from 0.05 up
to 0.40 in steps equal to 0.05; two
larger values equal to 0.5 and 0.6
are also used. The lower and up-
per cuttoffs are given by Rmin

=0.25 and Rmax=4, respectively;
the distributions are renormalized
accordingly.
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FIG. 2. Schematic diagram of the unit cell with periodic bound-
ary conditions; illustration of some geometrical notations.
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III. MACROSCOPIC PROPERTIES

A. Geometric properties

Since in this paper spherical particles are addressed, only
overall scalar parameters can be introduced. Let Vp and Sp
denote the pore volume and the surface of the solid interface,
respectively. According to standard definitions �23�, the hy-
draulic radius RH is defined as the ratio of the total pore
volume to its surface area,

RH =
Vp

Sp
. �4�

An equivalent radius R̃ can be defined as the inverse of the
harmonic mean radius,

R̃ = �
 v�R�dR

R
�−1

, �5a�

where v�R� is the probability density in volume �cf. �3��. R̃
has interesting properties since it can also be written as

R̃ =

 R3f�R�dR


 R2f�R�dR

�5b�

and as

R̃ =

 4�R2f�R�R dR


 4�R2f�R�dR

. �5c�

In the last expression, the average is weighted by the sphere
surfaces.

Another property is worth mentioning. Whatever the ra-
dius distribution, the following relation holds for spheres:

RH =



3�1 − 
�
R̃ . �6�

Therefore, two sphere packings with the same porosity and

the same R̃ have the same hydraulic radius and the same
surface area of the pores, whatever the radius distribution.

These quantities can be determined on the packings gen-
erated by the algorithm since the coordinates of the sphere
centers and the sphere radii are recorded. The spheres whose
centers are located between two horizontal planes are known;
the total solid volume and the total solid interface can be
readily deduced.

Another possible way consists in discretizing the spheres
and then performing the previous measurements on the dis-
cretized array. More precisely, space is discretized into Ncx
�Ncy �Ncz elementary cubes of size a; generally, Ncx=Ncy.
Whenever the center of an elementary cube falls in the solid
�fluid� phase, the whole cube is considered as filled with
solid �fluid�. Note that the transport calculations are done on
these discretized arrays.

It is easy to realize that volumes are relatively insensitive
to the way they are measured, but this is not the case for

surfaces, where a systematic bias is present. More precisely,
numerical evaluations of isotropic surfaces are overestimated
by a factor 3/2 by the discrete numerical scheme used here.
However, this effect is partly compensated by the nonzero
area of the grain contacts in the discretized representation,
which lowers the wetted area. �6� is compared to the numeri-
cal data in Fig. 3 where the mean grain radius is 10a. Note

that in this comparison R̃ is derived from �4� while the nu-
merical value of Sp is deduced from the spatial correlation of
the pore phase function determined on the discretized pack-
ings �see �23��. Accordingly, the numerical data are almost
underestimated by a factor 2/3; the difference is due to the
contacts between spheres, whose influence decreases when �
increases.

B. Transport properties

In this section, the macroscopic effective coefficients for
the basic transport processes by conduction and convection
in random packed beds are determined. The governing equa-
tions and their methods of solution are briefly recalled in this
section. In all cases, the macroscopic coefficients are de-
duced by integrating the local fields, obtained by solving the
transport equations at the pore scale.

Since the packings are macroscopically homogeneous,
they are considered as infinite periodic media, made of iden-
tical unit cells. Note that the packings are indeed built with
periodic conditions along the two horizontal directions.
However, when a cubic sample is cut from a deposited bed,
the lower and upper faces do not match each other. This may
affect the computation of the transport properties along the
vertical axis. The content of a unit cell is discretized into
Ncx�Ncy �Ncz elementary cubes of size a as mentioned
above. In this paper, one has Nc=Ncx=Ncy =1.25Ncz. There-
fore, the horizontal sides of the unit cell are L=Ncxa. The
volume of the unit cell is denoted by �0 and its outer surface
by ��0.

0.25 0.3 0.35 0.4
0.05

0.1

0.15

0.2

0.25

ε

R
H

/ R
~

FIG. 3. Ratio of the hydraulic radius RH and the equivalent

radius R̃. The solid line corresponds to �6�, and the broken line to
2/3 of �6�. The symbols correspond to bidisperse packings with fR

=0 to 1 and �=2 ���, 3 ���, 4 ���, 5 ���, 6 ���, and 8 ���, and
to log-normal packings with 	 up to 0.6 ��� when the mean grain
radius is 10a.

MOURZENKO et al. PHYSICAL REVIEW E 77, 066306 �2008�

066306-4



Since the values of Nc differ from case to case, they will
be given when appropriate. However, the value Nc=160 is
commonly used which means that the unit scale is equal to
10a. When discretization effects are studied, the values Nc
=128, 160, 192, and 256 are used.

1. Conduction

The electrical terminology is used here, but the following
developments are also valid for thermal conduction and for
diffusion of Brownian particles whose size is small with re-
spect to a typical size of the medium. The local flux q is
equal to

q = − �0 � � , �7�

where �0 is the fluid conductivity. Electrical and thermal
conduction are both governed by a Laplace equation ��24�
and �23� where additional details are given�, which corre-
sponds to the conservation of the local electrical flux,

�2� = 0, �8�

where � is the local electrical potential, together with the
no-flux boundary condition at the wall Sp when the solid
phase is assumed to be insulating,

n · �� = 0 on Sp, �9�

where n is the unit vector normal to Sp.
�� is assumed to be spatially periodic with a period aNc

in the three directions of space. In addition, either the mac-
roscopic potential gradient or the average electrical flux

q =
1

�0



��0

Rq · ds �10�

is specified. These two quantities are related by the symmet-
ric positive definite conductivity tensor �

q = − � · �� , �11�

which depends only upon the geometry of the medium.
On average, for an isotropic random medium, � is a

spherical tensor equal to � ·I. For deposited packings, the x
and y directions play equivalent roles, but one may expect a
different behavior along the z axis. In the following, for the
sake of simplicity, � denotes the average of the conductivi-
ties along the x and y axes, which were indeed always found
equal within statistical fluctuations.

The Neumann problem �8�–�10� is solved via a second-
order finite-difference formulation. A conjugate-gradient
method turned out to be very effective for the problem at
hand, primarily because it is better suited to vectorial pro-
gramming than implicit relaxation schemes.

The formation factor F is generally defined as the inverse
of the dimensionless macroscopic conductivity,

F =
�0

�
. �12�

The length scale � defined by �25� can be used in order to
characterize porous media. � is essentially a volume-to-
surface pore ratio with a measure weighted by the local value

of the electric field E�x� in a conduction process,

� = 2



Vp

�E�x��2dv



Sp

�E�x��2ds

. �13�

This quantity can be calculated when the Laplace equation
�8� is solved in order to derive �.

2. Stokes flow

The low-Reynolds-number flow of an incompressible
Newtonian fluid is governed by the usual Stokes equations

�p = 
 f�
2v, � · v = 0, �14�

where v, p, and 
 f are the velocity, pressure, and viscosity of
the fluid, respectively. In general, v satisfies the no-slip con-
dition at the wall,

v = 0 on Sp. �15a�

Because of the spatial periodicity of the medium, it can be
shown ��26,23�� that v possesses the following property:

v is spatially periodic along the

three directions of space. �15b�

This system of equations and conditions applies locally at
each point R of the interstitial fluid. In addition, it is assumed
that either the seepage velocity vector is specified, i.e.,

v =
1

�0



��0

Rv · ds = a prescribed constant vector,

�16a�

or else the macroscopic pressure gradient is specified,

�p = a prescribed constant vector. �16b�

Note that �16� is easily derived from the identity valid for an
incompressible fluid v=� · �Rv� �cf. �23��. Since the system
�14�–�16� is linear, it can be shown that v is a linear function
of �p. These two quantities are related by the permeability
tensor K such that

v = −
1


 f
K · �p . �17�

Here, K is a symmetric tensor that is positive definite. It
depends only on the geometry of the system and thus can be
simplified when the porous medium possesses geometric
symmetries. Its diagonal component Kxx was calculated by
imposing �p along the x axis. It is simply denoted by K in
the following.

The numerical method that is used here is a second-order
finite-difference scheme identical to the one first described in
�26�. In order to cope with the continuity equation, the so-
called artificial compressibility method was applied with a
staggered marker-and-cell mesh �27�.

The length scale � was proved to be very useful in many
ways. As suggested by �25�, �28� showed that the permeabil-
ity K can be determined via �,
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K =
�2

8F
, �18�

where F is the formation factor. This was recently confirmed
by systematic calculations of �13�, where K, F, and � were
computed for a variety of porous media. Moreover, �13�
showed that � is indeed approximately equal to twice the
inverse of the surface-to-volume ratio,

� � 2
Vp

Sp
. �19�

IV. GEOMETRIC PROPERTIES

Let us focus our discussion on the porosity of the bidis-
perse and log-normal packings which were defined in Sec.
II B.

A. Bidisperse packings

The porosity of bidisperse packings is displayed in Fig. 4.
First, it should be noted that the porosity of monodisperse
packings 
m is given by


m � 0.41, �20�

in agreement with �12�. For bidisperse packings, the general
physical effect is clear. If � is close to 1, the porosity varia-
tions are very small; in the opposite case, they may be quite
large with a minimum that is located around fR=0.70; fR is
recalled to be the volume fraction of large grains. The gen-
eral shape of these curves is in agreement with the data that
can be found in the literature �see �16� for instance�; a more

precise comparison will be done at the end of this section.
The curves are seen to be incomplete in Fig. 4. This is due to
the so-called segregation effect, which occurs for ��5. The
small particles tend to accumulate at the bottom of the pack-
ing where they entirely fill the void space between the large
particles.

Such an effect is illustrated in Figs. 5�a� and 5�b�. The
packing is actually composed of two parts. The upper part is
almost exclusively composed by large particles while the
lower one is progressively filled by small particles. Because
of the imposed proportion between large and small particles,
the upper front advances faster than the lower front, where
the smaller particles fill in the gap. In the lower part of the
packing, it is obvious that the volumetric proportion of large
particles is different from the value fR which is imposed.

The value fRo of fR in the lower part of the packing can be
estimated in the following approximate way in a binary mix-
ture with an extreme size ratio ��1. For an overall volume
equal to 1, the large particles fill a volume 1−
m. The small
particles fill the complement to 1, i.e., 
m. The volume of the
small particles is equal to 
m �1−
m�. Therefore, fRo can be
expressed as

fRo =
1

1 + 
m
�21�

which is about 0.71 for 
m=0.41. This situation corresponds
to the maximal compaction for a binary mixture. The poros-
ity in the lower part of the packing is simply 
m

2 . These
simple properties are seen to be independent of the size ratio
� provided that it is small.
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FIG. 4. Porosity of bidisperse packings as a function of the
volume fraction of the larger grains. The packing characteristics are
given in Table I. From top to bottom, data are for �=2 ���, 3 ���,
4 ���, 5 ���, 6 ���, and 8 ���. The two lower dotted lines corre-
spond to Eqs. �24� and �25�. The thick solid line corresponds to the
variations of the minimal porosity for various values of � provided
by Eqs. �26� and �27�; the dots on this curve provide the value of �.
The star corresponds to the bottom layer of a bed with �=8 and
fR�0.8 �see Fig. 5�.

FIG. 5. �a� Illustration of the segregation effect for a bidisperse
packing with a ratio �=8 and fR=0.85. �b� is an enlarged view of
the middle part of �a�. Log-normal packings with 	=0.2 �c�, 0.4 �d�,
and 0.6 �e�.
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In the same way, one can estimate the heights H and h of
the fronts of the large and small particles, respectively. The
ratio between the numbers N and n of large and small par-
ticles in the packing can be derived from fR and �:

n

N
= �31 − fR

fR
. �22�

Let us consider a packing whose basis has an area S. It is an
easy matter to derive the height H of the packing composed
only of the large particles. Then, the small particles are as-
sumed to fill in the gaps in between these large particles; for
the sake of simplicity, consider that the packing of the small
particles inside the large voids is always equal to 
m. It is
easy to obtain

h

H
=

n

N

1

�3
m
=

1 − fR


mfR
. �23�

In Fig. 5�a�, the ratio h /H can be approximated as 0.53. An
immediate application of the previous equation yields h /H
=0.43 for �=8 and fR=0.85. The agreement is acceptable
considering the simplicity of the argument. The discrepancy
simply indicates that the porosity of the small particles inside

the large pores is slightly larger than 
m even for a ratio equal
to 8.

One can go a little further in this direction and derive the
shapes of the envelopes which are seen in Fig. 4. If the
proportion of large grains is smaller than fRo, they are dis-
persed within a bed of small ones and the porosity is


 =
�1 − fR�
m

1 − fR
m
� 
m

2 . �24�

Conversely, if the population of large grains is larger, the
amount of small ones is insufficient to fill the macropores.
The porosity can be formally expressed as


 =
fR − 1 + 
m

fR
. �25�

These two curves are illustrated in Fig. 4.
Let us now consider the various porosities that can be

defined in the packing. The macroporosity is defined as the
proportion of space between the large grains, and the mi-
croporosity as the proportion of space between the small
grains. These quantities are illustrated in Fig. 6 for a radius
ratio �=8. Averages are taken on slices of dimensions 16
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FIG. 6. Segregation effects in a bidisperse packing with �=8. Porosities are displayed as functions of the altitude z measured from the
bottom of the box. They are obtained by averaging over slices of height 12.5. Data are for fR=0 �dotted line, �, r=0.4, R=3.2�, 0.7 �dotted
line, �; r=0.4, R=3.2�, 0.7 �solid line, �, r=0.22, R=1.78�, 0.8 �solid line, �, r=0.22, R=1.78�, 0.85 �solid line, �, r=0.22, R=1.78�. �a�
Total porosity, �b� microporosity, and �c� macroporosity. The proportion of large grains fR determined from the grain list is displayed in �d�.
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�16�12.8. The macroporosity is indeed found equal to 
m;
since the small grains fall down to the bottom of the bed,
they have no influence on the arrangement of the large ones.
However, the microporosity is larger because finite-sized
grains cannot fill the macropores efficiently.

Segregation occurs only for the two largest values of fR
=0.8 and 0.85. In these two cases, compact bottom layers
with identical characteristics develop; they differ only in
their thicknesses. For fR=0.7, the segregation effect disap-
pears and the macroporosity is larger than 
m because the
presence of small grains prevents the large ones from form-
ing a stable packing by themselves. The mixture composition
is equal to the mean value throughout the bed thickness.

After these illustrations relative to segregation, it is useful
to come back to Fig. 4. Reference �15� summarized previous
experimental results and gave the variations of the minimum
of porosity for each radius ratio � if ��0.741:


min = 
m − 
m�1 − 
m��1 − 2.35� + 1.35�2� . �26�

The other situation ��0.741 is not used in this paper. The
fractional volume vR for which this minimum occurs is given
by

vR =
1 − �2

1 + 
m
. �27�

This quantity is displayed in Fig. 4. It does not agree well
with our numerical data because the numerical packings are
loose while the experimental systems are closely packed.
Our data correspond to packings generated under the action
of gravity without any further rearrangement in order to de-
crease the porosity. It is useful to note that for large values of
�, when segregation occurs, some numerical experiments
were performed; packings of large particles were built first
and the small particles were dropped later; the results were
the same as when large and small particles were dropped
together. Therefore, the packings that were generated and
their macroscopic transport properties are not well represen-
tative of closely packed beds; it will be seen later how the
macroscopic properties of these closely packed beds can be
obtained.

B. Log-normal packings

Examples of log-normal packings are provided in Figs.

5�c�–5�e�, for 	=0.2, 04, and 0.6. The ratio RH / R̃ is dis-
played in Fig. 3 together with the data relative to bidisperse

packings. It is clearly seen that the values RH / R̃ for the log-
normal packings and the bidisperse packings with radius ra-
tios equal to 2 and 3 are very close.

The porosities of the log-normal packings are displayed in
Fig. 7 for various values of the standard deviation 	 of the
log-normal law �3�. 
 is a decreasing function of 	. The
decrease is relatively slow at the beginning since 
 is still
equal to 0.4 for 	=0.2. Then, the decrease is more rapid, and
almost a linear function of 	.

V. TRANSPORT PROPERTIES

This section is devoted to the study of conductivity and
permeability of packings.

A. Conductivity

1. Bidisperse packings

Systematic calculations were performed for the bidisperse
packings previously discussed in Sec. II B. The first results
are displayed in Fig. 8�a� and they show that overall the
conductivity variations are similar to the porosity variations
displayed in Fig. 4. However, the present figure has a very
undesirable feature, namely, the two extreme values obtained
for the monodisperse packings do not coincide. This is in
contradiction with the fact that the macroscopic conductivity
of a porous medium does not depend on the scale of the
medium; for instance, if all the dimensions are multiplied by
a factor 2, � should remain the same. Moreover, the porosi-
ties of these extreme monodisperse packings are very close
to one another in Fig. 4; 
 is equal to 0.407 and 0.409 for
fR=0 and 1, respectively. Therefore, the major cause of dis-
crepancy between the extreme conductivities can only be the
discretization effect since the ratio between the radii and the
mesh size is not the same.

Therefore, a systematic study of discretization effects was
started. Four discretizations were used for each sample,
namely, Nc=128, 160, 192, and 256. Some results are re-
ported in Fig. 8�b�. They clearly show that the calculated
conductivity �cal is a linear function of the mesh size a /RH.
Moreover, �cal can be easily extrapolated for a vanishing
mesh size. Let us denote by �� this value corresponding to
a /RH=0. The linear relation can be represented as

�cal = ���1 − Ŝ
a

RH
� , �28�

where the constant Ŝ depends a priori on the particular pack-
ing.

It turns out, as demonstrated by Fig. 8�c�, that �cal /�� is
a function only of the mesh size a /RH, and that it does not
depend on the particular packings under consideration. The

coefficient Ŝ is determined by a linear regression fit over all
the numerical results:
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FIG. 7. Porosity of log-normal packings as a function of the
standard deviation of the log-normal law �3�.
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Ŝ = 0.238. �29�

This fit is really excellent and all the numerical results lie
within −1.74% and +0.66% of the regression line.

Equation �28� can now be used in a systematic way in
order to determine the extrapolated values �� for each bid-
isperse packing. This process is illustrated in Fig. 8�d� for a
particular value �=3. Note that the data in this sample are for
a single slice. Hence, the results for fR=0 and 1 are still
slightly different because they correspond to different real-
izations of monodisperse packings. This is eliminated by tak-
ing statistical averages as seen below.

Then this extrapolation procedure is systematically ap-
plied to all the data displayed in Fig. 8�a� and the results are
shown in Fig. 9�a�. The differences due to the extrapolation

procedure are important. It is seen that now the two extreme
conductivities for monodisperse packings are identical in
agreement with first principles.

2. Log-normal packings

The same procedure was followed to determine the mac-
roscopic conductivity of the log-normal packings. Figure
8�c� shows that the conductivity of the log-normal packings
follows the same relation �28� as the bidisperse packings
which is quite a remarkable property. Thanks to this property,
data for log-normal packings are extrapolated to a vanishing
mesh size and the data are displayed in Fig. 9�b�.

3. Overall correlations for conductivity

It is customary to represent the data according to the
widely used Archie law ��29��
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FIG. 8. Extrapolation of the conductivities. �a� Conductivities of bidisperse packings of spheres as a function of the volume fraction fR

of the larger grains; the packing characteristics are given in Table I; data from top to bottom are for �=2 ���, 3 ���, 4 ���, 5 ���, 6 ���,
and 8 ���. �b� Calculated conductivity �cal for various bidisperse packings as a function of the mesh size a /RH. �c� �cal /�� as a function
of a /RH for the various bidisperse packings ��� and log-normal packings ���. �d� �cal and �� �solid line� for bidisperse packings obtained
with �=3; data from bottom to top are for Nc=128, 160, 192, and 256.
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� = �
m, �30�

where the exponent m is the so-called cementation exponent.
It has been measured by several authors on different types of
material. Reference �30� obtained m=1.64 and �=0.80 for
Fontainebleau sandstones in the range 0.05–0.30. Reference
�31� also observed a power law for sintered glass beads, with
m equal to 1.6 for 0.1�
�0.40. Her results are somewhat
scattered because of sample heterogeneities; her most homo-
geneous samples yield m�1.4. The authors of �32�, using
their own data and those of �33� for fused glass beads, ob-
tained m�2.3, ��3.3 for 0.02�
�0.2 and m�1.5, ��1
for 0.2�
�0.4. Reference �34� also obtained m�1.5 for

�0.3. Of course, the porosity variations in these media
result generally from various degrees of consolidation by
cementation �for sandstones� or by sintering �for beads�.

Therefore, results for low porosities cannot be directly ex-
trapolated to looser unconsolidated packings.

Reference �12� obtained an overall correlation for their
data with a poor discretization and without any extrapolation,

� = 0.88
1.72. �31�

The present data are represented as functions of porosity in
Fig. 10�a�. It is seen that they can be represented by Archie’s
law

�� = 0.808
1.2, �32a�

or equivalently
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FIG. 9. Extrapolated conductivity ��. �a� Bidisperse packings: �� as a function of the volume fraction of the larger grains fR; data are
for �=2 ���, 3 ���, 4 ���, 5 ���, 6 ���, and 8 ���. �b� Log-normal packings: �� as a function of the standard deviation 	.
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FIG. 10. �a� Extrapolated conductivity �� as a function of porosity; the broken and solid lines correspond to �32a� and �32b�, respec-

tively; the black square dots correspond to the extrapolated data of �12� and the black circles to �35�. �b� Dimensionless length �� / R̃ as a
function of the porosity 
; the broken line corresponds to Eq. �34�. In �a� and �b�, the symbols correspond to bidisperse packings with fR

=0 to 1 and �=2 ���, 3 ���, 4 ���, 5 ���, 6 ���, and 8 ���, and to log-normal packings with 	 up to 0.6 ���.
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�� = 0.772
 − 0.038. �32b�

These correlations are compared to the extrapolated value for
spheres of �12� and to the experimental data of �35� for
spheres.

Finally, the length scale � was systematically evaluated.
Its numerical value depends again on the spatial discretiza-
tion, but an extrapolated value �� was obtained by consid-
ering finer and finer discretizations, as was done for the con-
ductivity �. The convergence of � toward �� always
follows a linear law of the type of �28�, but the convergence
rate is not independent of the kind of size distribution, as it
was for � �see Eq. �29��. However, the discretization errors
are also smaller than for �. The deviation of � from ��

never exceeds 7%, even for a /RH larger than 3/2.
Note that the extrapolation is conducted in terms of

� /RH; hence, the influence of the discretization on the mea-
sure of RH is also eliminated. The dimensionless ratio
�� /RH�� is found to depend on 
 according to

� �

RH
�

�

= 3.5 − 1.6
 . �33�

It is of the order of 3 in the range of porosity 0.25�

�0.42. However, it should be remembered that RH is evalu-
ated from the discretized geometry, in which the interfacial
area is overestimated by a factor which tends to 3/2 when the
resolution parameter a /RH tends to 0. Hence, �� is indeed
about twice the hydraulic radius as determined from the con-
tinuous geometry, in agreement with �19�.

The combination of Eqs. �6� and �33�, while taking the
correction factor of 3/2 into account, yields

��

R̃
=

2


9�1 − 
�
�3.5 − 1.6
� . �34�

This expression is compared to the numerical data in Fig.
10�b� and seen to provide an estimate of �� within a few
percent for all the grain size distributions considered in the
present work.

B. Permeability

1. Bidisperse packings

The same route was followed for permeability. First, the
permeability was calculated systematically for all the pack-
ings and the results are displayed in Fig. 11�a�. They are
normalized by the square of the hydraulic radius. Despite
this normalization, the same effect as before is visible for
fR=0 and 1, namely, the corresponding dimensionless per-
meabilities are different for these two monodisperse pack-
ings which differ only in the size of the spheres; note that the
porosity is almost exactly the same as can be seen in Fig. 4.
Again, this is probably due to discretization effects since the
permeability of monodisperse packings should be propor-
tional to the square of the sphere radii.

This influence of discretization was studied by the same
technique as in Sec. V A 1 with four values of Nc=128, 160,
192, and 256. Let Kcal denote the numerical permeability for
a given discretisation a /RH. However, when the ratio
Kcal /RH

2 / �K /RH
2 �� is displayed as a function of a /RH �in ex-

act analogy with what was done in Fig. 8�, the data are not
well gathered by this representation. Another representation
was derived from the classical Carman-Kozeny equation �36�

K =

RH

2

k
, �35a�

where k is called the Kozeny constant; it is supposed to be of
the order of a few units and almost constant for a large va-
riety of conditions. This relation can be transposed for the
numerical values as

Kcal =

RH

2

kcal
. �35b�

Therefore, it was logical to try to display the results through
the corresponding values of kcal,
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FIG. 11. �a� Dimensionless permeability Kcal /RH
2 as a function of the volume fraction of the larger grains fR for all the bidisperse

packings; data are for �=2 ���, 3 ���, 4 ���, 5 ���, and 6 ���. �b� kcal /k� as a function of a /RH for bidisperse packings with �=2, 4, and
6 ��� and for log-normal packings ���.
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kcal

k�

= 1 + Ŝk
a

RH
, �36�

where Ŝk is a constant. In Fig. 11�b�, the data follow a single
line as was the case for conductivity in Fig. 8�c�. The con-

stant Ŝk can be calculated by means of a linear regression fit,

Ŝk = 0.7212. �37�

Finally, the extrapolated Kozeny constant is displayed in Fig.
12�a� for all the bidisperse packings. Two features are worth
noticing. First, k� has almost the same value for fR equal to
0 and 1. The differences are reduced to a few percent: k�

varies between 2.1 and 2.2 for fR=0, and between 2.22 and
2.3 for fR=1. This is due to the fact that the differences in
porosity and wetted surface are taken into account, and there-
fore eliminated, in k and not in K. Second, k� is almost the
same for � equal to 5 and 6.

2. Log-normal packings

The same procedure was followed to determine the mac-
roscopic permeability of the log-normal packings. As for
conductivity, the permeability of log-normal packings is seen
in Fig. 11�b� to follow �36�. Therefore, the same procedure
can be followed to extrapolate the Kozeny constant, and the
results are displayed in Fig. 12�b� as a function of the stan-
dard deviation. It is interesting to notice that the Kozeny
constant is almost a linear function of 	. Moreover, its varia-
tions are somewhat limited around 2.

3. Overall correlations for permeability

Various representations can be proposed to gather the pre-
vious results. They are given for the sake of completeness.
�K /RH

2 �� is displayed in Fig. 13 for the two types of studied
packings as a function of the geometric characteristics fR and
	. It is seen to be reasonably constant for these sets of pa-
rameters,
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FIG. 12. Extrapolated Kozeny constant k�. �a� Bidisperse packings: k� as a function of the volume fraction of the larger grains fR; data
are for �=2 ���, 3 ���, 4 ���, 5 ���, and 6 ���. �b� Log-normal packings: k� as a function of the standard deviation 	.
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FIG. 13. Dimensionless extrapolated permeability �K /RH
2 �� as a function of the volume fraction of the larger grains fR for all the

bidisperse packings �a�, and as a function of the standard deviation 	 for the log-normal packings �b�. Data in �a� are for �=2 ���, 3 ���,
4 ���, 5 ���, and 6 ���.
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0.162 � � K

RH
2 �

�

� 0.195. �38�

Note again that, by extrapolating the ratio K /RH
2 , the influ-

ence of the discretization on the measure of RH is eliminated.
Permeabilities can also be displayed as functions of porosity.
Permeabilities can be made dimensionless either by the

square hydraulic radius RH
2 or by the equivalent radius R̃2 �cf.

�5��. First, the trend for �K /RH
2 �� is complex and its interpre-

tation is not obvious. Second, the trend displayed in Fig.
14�a� is much simpler and it can be summarized by a power
law

� K

R̃2�
�

= 0.0835
3.1. �39�

The most successful formulation for unifying the numerical
results is in terms of the Kozeny constant, as shown in Fig.
14�b�, where k� is plotted as a function of 
. It is observed

that, for all the packings investigated here, k� is about 2
within at most �15%.

4. Overall conductivity-permeability correlations

Finally, the plot of the ratio KF /RH
2 in Fig. 15�a� clearly

shows that the permeability and conductivity coefficients are
strongly correlated. The data for all the bidisperse and log-
normal packings considered in the foregoing fall onto a
single curve, which can be represented by the heuristic for-
mula

KF

RH
2 =

1 – 1.88


�1 − 
�2 . �40�

� can also be used instead of RH. The ratio �KF /�2�� is
plotted in Fig. 15�b� as a function of 
. It is found nearly
constant, when 
 is in the investigated interval 0.25�

�0.41, and comprised between 1/8 and 1/12 in agreement
with �18�. Its residual dependence on porosity can be de-
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FIG. 14. �a� Dimensionless permeability �K / R̃2�� as a function of porosity; the broken line is Eq. �39�. �b� Extrapolated Kozeny constant
k� as a function of the porosity 
. In �a� and �b�, the symbols correspond to bidisperse packings with fR=0 to 1 and �=2 ���, 3 ���, 4 ���,
5 ���, and 6 ���, and to log-normal packings with 	 up to 0.6 ���.
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FIG. 15. Ratios �KF /RH
2 �� �a� and �KF /�2�� �b� as functions of the porosity 
. In �a�, the broken line corresponds to Eq. �40�; in �b�, the

broken line corresponds to the combination of Eqs. �32�, �34�, and �39�. In �a� and �b�, the symbols correspond to bidisperse packings with
fR=0 to 1 and �=2 ���, 3 ���, 4 ���, 5 ���, and 6 ���, and to log-normal packings with 	 up to 0.6 ���.

GEOMETRICAL AND TRANSPORT PROPERTIES OF… PHYSICAL REVIEW E 77, 066306 �2008�

066306-13



scribed within �15% by the combination of Eqs. �32�, �34�,
and �39�, which is nearly equivalent in this range of porosity
to the linear expression

KF

�2 = 0.2 − 
/4. �41�

VI. CONCLUDING REMARKS

The study reported in �12� has been extended to polydis-
perse packings. Bidisperse and log-normal packings were
systematically generated. Because of the random sequential
algorithm which is used and which simulates deposition un-
der gravity, the packings are loose. Their macroscopic geo-
metric and transport properties were calculated.

The numerical porosity has the same general variations
with the proportion of large spheres as obtained either ex-
perimentally or numerically by others. There exists a mini-
mum for each radius ratio. However, the numerical porosity
corresponds to a loose packing.

Discretization effects which were shown to be important
were analyzed and extrapolation formulas are proposed for
the conductivity and permeability for bidisperse and log-
normal packings. A way to minimize these effects would be
to use unstructured meshes with a tetrahedral decomposition
of space as was started in �37�.

Finally, the results are displayed as functions of porosity.
Power laws are obtained for the conductivity �see �32�� and
for the permeability �see �39��. The length scale � is also
successfully represented as a function of the porosity �34�. In
addition, the Kozeny constant and the ratio KF

�2 are found to
be nearly independent of the porosity, whatever the grain size
distribution. These relations are likely to be useful to ex-
trapolate the results obtained for loose packings to closely
packed systems.
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